On bounding the difference between the maximum degree and the chromatic number

نویسندگان

  • Oliver Schaudt
  • Vera Weil
چکیده

For every k ∈ N0, we consider graphs in which for any induced subgraph, ∆ ≤ χ − 1 + k holds, and call this family of graphs Υk, where ∆ is the maximum degree and χ is the chromatic number of the subgraph. We give a finite forbidden induced subgraph characterization for every k. The results are compared to those given in [6], where the graphs in which for any induced subgraph, ∆ ≤ ω − 1 + k holds, are considered. In particular, we find a set of graphs in which the minimal forbidden subgraphs for χ and ω coincide. Finally, we consider Υk in the universe of claw-free graphs and give a minimal subgraph characterization in terms of Turán graphs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The distinguishing chromatic number of bipartite graphs of girth at least six

The distinguishing number $D(G)$ of a graph $G$ is the least integer $d$ such that $G$ has a vertex labeling   with $d$ labels  that is preserved only by a trivial automorphism. The distinguishing chromatic number $chi_{D}(G)$ of $G$ is defined similarly, where, in addition, $f$ is assumed to be a proper labeling. We prove that if $G$ is a bipartite graph of girth at least six with the maximum ...

متن کامل

On bounding the difference between the maximum degree and the chromatic number by a constant

For every k ∈ N0, we consider graphs G where for every induced subgraph H of G, ∆(H) ≤ χ(H) − 1 + k holds, where ∆(H) is the maximum degree and χ(H) is the chromatic number of the subgraph H . Let us call this family of graphs Υk. We give a finite forbidden induced subgraph characterization of Υk for every k. We compare these results with those given in On bounding the difference between the ma...

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

A new approach to compute acyclic chromatic index of certain chemical structures

An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph $G$ denoted by $chi_a '(G)$ is the minimum number $k$ such that there is an acyclic edge coloring using $k$ colors. The maximum degree in $G$ denoted by $Delta(G)$, is the lower bound for $chi_a '(G)$. $P$-cuts introduced in this paper acts as a powerfu...

متن کامل

On Bounding the Difference of the Maximum Degree and the Clique Number

For every k ∈ N0, we consider graphs in which for any induced subgraph, ∆ ≤ ω−1+k holds, where ∆ is the maximum degree and ω is the maximum clique number of the subgraph. We give a finite forbidden induced subgraph characterization for every k. As an application, we find some results on the chromatic number χ of a graph. B. Reed stated the conjecture that for every graph, χ ≤ ⌈ ∆+ω+1 2 ⌉ holds....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014